skip to primary navigationskip to content

Carazo Salas Group

Functional Genomics of Cell Morphogenesis

Research interests

An extraordinary capacity of cells is their ability to modulate their shape, polarity and intracellular cytoskeletal organisation, according to the functions they need to perform. Work in our lab seeks to elucidate how the gene and protein networks that regulate cellular growth, division and morphogenesis operate in space and in time, and how different cell shapes and growth patterns can arise from a single genome.

We have pioneered the development of 3D image-based high-throughput/high-content microscopy pipelines for yeast-based functional genomics studies. Using that approach, we recently completed the first comprehensive live cell-based screen for microtubule and cell shape regulators and discovered tens of novel candidate regulators - mostly evolutionarily conserved through to humans - which we are validating. Our aim is to generate the most exhaustive genomic map and phenotypic annotation of such regulators, and identify candidate biomedically-relevant targets. Capitalising on this technology, several other microscopy-based functional genomics projects are ongoing in our group.

We also recently discovered that the molecular machinery that regulates cell polarity localises to nanoscopic protein clusters at the cell cortex, with different regulators belonging to different cluster populations. This allows cells to control whether certain polarity regulators interact with others on the cortex, at different points of the cell cycle, revealing a fundamental hitherto ignored layer of cell polarity regulation.

Lastly, a large focus of the lab has shifted to establishing refined biophysical and micro-fabrication technologies to investigate how mechanical inputs modulate cell growth, a fundamental yet very poorly understood aspect of morphogenetic control.

Selected publications

  1. Graml V, Studera X, Lawson JL, Chessel A, Geymonat M, Bortfeld-Miller M, Walter T, Wagstaff L, Piddini E, Carazo-Salas RE. A genomic Multiprocess survey of the machineries that control and link cell shape, microtubule organisation and cell-cycle progression. Dev Cell. 2014 Oct 27;31(2):227-39. doi: 10.1016/j.devcel.2014.09.005.
  2. Abenza JF, Chessel A, Raynaud WG, Carazo-Salas RE. Dynamics of cell shape inheritance in fission yeast. PLoS One. 2014 Sep 11:9(9):e106959. doi: 10.1371/journal.pone.0106959. eCollection 2014.
  3. Vaggi F, Schiavinotto T, Lawson JL, Chessel A, Dodgson J, Geymonat M, Sato M, Carazo-Salas RE, Csikász-Nagy A. A network approach to mixing delegates at meetings. Elife. 2014;3:e02273. doi: 10.7554/eLife.02273. Epub 2014 Feb 4.
  4. Carazo-Salas RE, Czikasz-Nagy A and Sato M (2013) Cellular polarity: from mechanisms to disease. Philosophical Transactions of the Royal Society B Special issue. Publication Online 23 Sept 2013, paper November 2013 > See publication information > See contents >
  5. Dodgson J, Chessel A, Yamamoto M, Vaggi F, Cox S, Rosten E, Albrecht D, Geymonat M, Csikàsz-Nagy A, Sato M and Carazo-Salas RE (2013) Spatial segregation of polarity factors into distinct cortical clusters is required for cell polarity control. Nature Communications2013;4:1834

>> Full list of publications on PubMed


Contact details

Group Leader : Dr Rafael Carazo Salas

Address :
C/O Department of Pharmacology,
University of Cambridge,
Tennis Court Road,
Cambridge CB2 1PD,
United Kingdom
Please use the above address during
Department refurbishment


Tel: +44 (0)1223 761267

Group members