ga('create', 'UA-58416928-1', 'auto'); ga('send', 'pageview'); skip to primary navigationskip to content

Quantifying ES cells : New paper from the Martinez Arias Group

last modified Oct 09, 2013 11:54 AM

Pluripotency refers to the property of a cell population to give rise to all cell types of an organism. Embryonic Stem (ES) cells are pluripotent and are able to self renew this property in culture. ES cells have become an important focus of research. From the biomedical point of view because they hold a promise for regenerative medicine, from the basic science point of view because they offer a useful experimental system to understand how cells make decisions in development.

AMA paper fig Oct13

Work over the last ten years has identified a core set of transcription factors that are necessary and sufficient for the establishment and the maintenance of pluripotency with two of these factors, Oct4 and Nanog, at the center of the network. However, how they function together to achieve this state has remained elusive. Most of the models focus on transcriptional gene regulatory networks assembled from interactions between these factors. However we have shown recently that pluripotency is characterized not by the absolute amount of any of these factors but by specific ratios of Nanog and Oct4 (Muñoz Descalzo et al. 2012 Correlations between the levels of Nanog and Oct4 as a signature for naïve pluripotency in mouse embryonic stem cells Stem Cells 30, 2683-2691). Furthermore, it appears that the amount of ß-catenin is key to the stability of the state. In this work we use a combination of quantitative immunofluorescence, genetics and modelling to show that pluripotency is dependent on a competitive protein network whose function is to buffer the levels of Oct4. ß-catenin emerges as the anchor of the network and the one element whose fluctuations determine the stability of the state.

While not doing away with Gene Regulatory Networks, this study raises the power of protein networks as the information processing units of the cell.

Paper details:

Muñoz-Descalzo, S., Rue, P., Faunes, F., Hayward, P., Jakt, L.M., Balayo, C., Garcia Ojalvo, J. and Martinez Arias, A. (2013) A competitive protein interaction network buffers Oct4-mediated differentiation to promote pluripotency in embryonic stem cells. Mol. Sys. Biol. 9 Article number: 694  doi:10.1038/msb.2013.49

Martinez Arias Group page